Comparing Plan Recognition Algorithms through Standard LibrariesOpen Website

2018 (modified: 02 Mar 2020)AAAI Workshops 2018Readers: Everyone
Abstract: Plan recognition is  one of the fundamental problems of AI, applicable to many domains, from user interfaces to cyber security. We focus on a class of algorithms that use plan libraries as input to the recognition process. Despite the prevalence of these approaches, they lack a standard representation, and have not been compared to each other on common test bed. This paper directly addresses this gap by providing a standard plan library representation and evaluation criteria to consider. Our representation is comprehensive enough to describe a variety of known plan recognition problems, yet it can be easily applied to existing algorithms, which can be evaluated using our defined criteria. We demonstrate this technique on two known algorithms, SBR and PHATT. We provide meaningful insights both about the differences and abilities of the algorithms. We show that SBR is superior to PHATT both in terms of computation time and space, but at the expense of functionality and compact representation. We also show that depth is the single feature of a plan library that increases the complexity of the recognition, regardless of the algorithm used.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview