A Discriminative Syntactic Word Order Model for Machine TranslationDownload PDFOpen Website

2007 (modified: 12 Nov 2022)ACL 2007Readers: Everyone
Abstract: A discriminatively trained word order model is used to identify a most likely word order from a set of word orders for target words translated from a source sentence. For each set of word orders, the discriminatively trained word order model uses features based on information in a source dependency tree and a target dependency tree and features based on the order of words in the word order. The discriminatively trained statistical model is trained by determining a translation metric for each of a set of N-best word orders for a set of target words. Each of the N-best word orders are projective with respect to a target dependency tree and the N-best word orders are selected using a combination of an n-gram language model and a local tree order model.
0 Replies

Loading