End-to-End 6-DoF Object Pose Estimation Through Differentiable RasterizationOpen Website

2018 (modified: 11 Nov 2022)ECCV Workshops (3) 2018Readers: Everyone
Abstract: Here we introduce an approximated differentiable renderer to refine a 6-DoF pose prediction using only 2D alignment information. To this end, a two-branched convolutional encoder network is employed to jointly estimate the object class and its 6-DoF pose in the scene. We then propose a new formulation of an approximated differentiable renderer to re-project the 3D object on the image according to its predicted pose; in this way the alignment error between the observed and the re-projected object silhouette can be measured. Since the renderer is differentiable, it is possible to back-propagate through it to correct the estimated pose at test time in an online learning fashion. Eventually we show how to leverage the classification branch to profitably re-project a representative model of the predicted class (i.e. a medoid) instead. Each object in the scene is processed independently and novel viewpoints in which both objects arrangement and mutual pose are preserved can be rendered. Differentiable renderer code is available at: https://github.com/ndrplz/tensorflow-mesh-renderer .
0 Replies

Loading