Cross-Lingual Vision-Language NavigationDownload PDF

25 Sep 2019 (modified: 24 Dec 2019)ICLR 2020 Conference Withdrawn SubmissionReaders: Everyone
  • Original Pdf: pdf
  • Keywords: Vision-Language Navigation, Cross-lingual Representation Learning, Cross-lingual Adaptation
  • TL;DR: We introduce a new task and dataset on cross-lingual vision-language navigation, and propose a general cross-lingual VLN framework for the task.
  • Abstract: Vision-Language Navigation (VLN) is the task where an agent is commanded to navigate in photo-realistic unknown environments with natural language instructions. Previous research on VLN is primarily conducted on the Room-to-Room (R2R) dataset with only English instructions. The ultimate goal of VLN, however, is to serve people speaking arbitrary languages. Towards multilingual VLN with numerous languages, we collect a cross-lingual R2R dataset, which extends the original benchmark with corresponding Chinese instructions. But it is time-consuming and expensive to collect large-scale human instructions for every existing language. Based on the newly introduced dataset, we propose a general cross-lingual VLN framework to enable instruction-following navigation for different languages. We first explore the possibility of building a cross-lingual agent when no training data of the target language is available. The cross-lingual agent is equipped with a meta-learner to aggregate cross-lingual representations and a visually grounded cross-lingual alignment module to align textual representations of different languages. Under the zero-shot learning scenario, our model shows competitive results even compared to a model trained with all target language instructions. In addition, we introduce an adversarial domain adaption loss to improve the transferring ability of our model when given a certain amount of target language data. Our methods and dataset demonstrate the potentials of building a cross-lingual agent to serve speakers with different languages.
4 Replies