Cramer-Wold AutoEncoder

Sep 27, 2018 ICLR 2019 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: Assessing distance betweeen the true and the sample distribution is a key component of many state of the art generative models, such as Wasserstein Autoencoder (WAE). Inspired by prior work on Sliced-Wasserstein Autoencoders (SWAE) and kernel smoothing we construct a new generative model – Cramer-Wold AutoEncoder (CWAE). CWAE cost function, based on introduced Cramer-Wold distance between samples, has a simple closed-form in the case of normal prior. As a consequence, while simplifying the optimization procedure (no need of sampling necessary to evaluate the distance function in the training loop), CWAE performance matches quantitatively and qualitatively that of WAE-MMD (WAE using maximum mean discrepancy based distance function) and often improves upon SWAE.
  • TL;DR: Inspired by prior work on Sliced-Wasserstein Autoencoders (SWAE) and kernel smoothing we construct a new generative model – Cramer-Wold AutoEncoder (CWAE).
  • Keywords: autoencoder, generative models, deep neural networks
0 Replies

Loading