Optimistic Adaptive Acceleration for Optimization

Sep 25, 2019 Blind Submission readers: everyone Show Bibtex
  • Abstract: This paper considers a new variant of AMSGrad called Optimistic-AMSGrad. AMSGrad is a popular adaptive gradient based optimization algorithm that is widely used in training deep neural networks. The new variant assumes that mini-batch gradients in consecutive iterations have some underlying structure, which makes the gradients sequentially predictable. By exploiting the predictability and some ideas from Optimistic Online learning, the proposed algorithm can accelerate the convergence and also enjoys a tighter regret bound. We evaluate Optimistic-AMSGrad and AMSGrad in terms of various performance measures (i.e., training loss, testing loss, and classification accuracy on training/testing data), which demonstrate that Optimistic-AMSGrad improves AMSGrad.
  • Original Pdf:  pdf
0 Replies