Interactive Phrases: Semantic Descriptionsfor Human Interaction Recognition.Download PDFOpen Website

2014 (modified: 10 Nov 2022)IEEE Trans. Pattern Anal. Mach. Intell.2014Readers: Everyone
Abstract: This paper addresses the problem of recognizing human interactions from videos. We propose a novel approach that recognizes human interactions by the learned high-level descriptions, interactive phrases. Interactive phrases describe motion relationships between interacting people. These phrases naturally exploit human knowledge and allow us to construct a more descriptive model for recognizing human interactions. We propose a discriminative model to encode interactive phrases based on the latent SVM formulation. Interactive phrases are treated as latent variables and are used as mid-level features. To complement manually specified interactive phrases, we also discover data-driven phrases from data in order to find potentially useful and discriminative phrases for differentiating human interactions. An information-theoretic approach is employed to learn the data-driven phrases. The interdependencies between interactive phrases are explicitly captured in the model to deal with motion ambiguity and partial occlusion in the interactions. We evaluate our method on the BIT-Interaction data set, UT-Interaction data set, and Collective Activity data set. Experimental results show that our approach achieves superior performance over previous approaches.
0 Replies

Loading