Scaling Convex Neural Networks with Burer-Monteiro FactorizationDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: burer-monteiro, convex optimization, neural networks, stationary points, global optima, relu activation
TL;DR: We apply the Burer-Monteiro factorization to two-layer ReLU (fully-connected, convolutional, self-attention) neural networks by leveraging their implicit convexity, and provide insights into stationary points and local optima of these networks.
Abstract: Recently, it has been demonstrated that a wide variety of (non) linear two-layer neural networks (such as two-layer perceptrons, convolutional networks, and self-attention) can be posed as equivalent convex optimization problems, with an induced regularizer which encourages low rank. However, this regularizer becomes prohibitively expensive to compute at moderate scales, impeding training convex neural networks. To this end, we propose applying the Burer-Monteiro factorization to convex neural networks, which for the first time enables a Burer-Monteiro perspective on neural networks with non-linearities. This factorization leads to an equivalent yet computationally tractable non-convex alternative with no spurious local minima. We develop a novel relative optimality bound of stationary points of the Burer-Monteiro factorization, thereby providing verifiable conditions under which any stationary point is a global optimum. Further, for the first time, we show that linear self-attention with sufficiently many heads has no spurious local minima. Our experiments demonstrate the utility and implications of the novel relative optimality bound for stationary points of the Burer-Monteiro factorization.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Optimization (eg, convex and non-convex optimization)
Supplementary Material: zip
11 Replies

Loading