Learning Coordination Policies over Heterogeneous Graphs for Human-Robot Teams via Recurrent Neural Schedule Propagation

Published: 01 Jan 2022, Last Modified: 27 Sept 2024IROS 2022EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: As human-robot collaboration increases in the workforce, it becomes essential for human-robot teams to coordinate efficiently and intuitively. Traditional approaches for human-robot scheduling either utilize exact methods that are intractable for large-scale problems and struggle to account for stochastic, time varying human task performance, or application-specific heuristics that require expert domain knowledge to develop. We propose a deep learning-based framework, called HybridNet, combining a heterogeneous graph-based encoder with a recurrent schedule propagator for scheduling stochastic human-robot teams under upper- and lower-bound temporal constraints. The HybridNet's encoder leverages Heterogeneous Graph Attention Networks to model the initial environment and team dynamics while accounting for the constraints. By formulating task scheduling as a sequential decision-making process, the HybridNet's recurrent neural schedule propagator leverages Long Short-Term Memory (LSTM) models to propagate forward consequences of actions to carry out fast schedule generation, removing the need to interact with the environment between every taskagent pair selection. The resulting scheduling policy network provides a computationally lightweight yet highly expressive model that is end-to-end trainable via Reinforcement Learning algorithms. We develop a virtual task scheduling environment for mixed human-robot teams in a multi-round setting, capable of modeling the stochastic learning behaviors of human workers. Experimental results showed that HybridNet outperformed other human-robot scheduling solutions across problem sizes for both deterministic and stochastic human performance, with faster runtime compared to pure-GNN-based schedulers.
Loading