Abstract: This paper tackles the under-explored problem of DOM element nomination and representation learning with three important contributions. First, we present a large-scale and realistic dataset of webpages, far richer and more diverse than other datasets proposed for element representation learning, classification and nomination on the web. The dataset contains $51,701$ manually labeled product pages from $8,175$ real e-commerce websites. Second, we adapt several Graph Neural Network (GNN) architectures to website DOM trees and benchmark their performance on a diverse set of element nomination tasks using our proposed dataset. In element nomination, a single element on a page is selected for a given class. We show that on our challenging dataset a simple Convolutional GNN outperforms state-of-the-art methods on web element nomination. Finally, we propose a new training method that further boosts the element nomination accuracy. In nomination for the web, classification (assigning a class to a given element) is usually used as a surrogate objective for nomination during training. Our novel training methodology steers the classification objective towards the more complex and useful nomination objective.
0 Replies
Loading