Faster Inference of Flow-Based Generative Models via Improved Data-Noise Coupling

Published: 22 Jan 2025, Last Modified: 20 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: generative models, flow matching
TL;DR: the paper introduces LOOM-CFM, a method that straightens sampling trajectories in the flow matching framework via storing and exchanging the locally optimal data-noise couplings across minibatches
Abstract: Conditional Flow Matching (CFM), a simulation-free method for training continuous normalizing flows, provides an efficient alternative to diffusion models for key tasks like image and video generation. The performance of CFM in solving these tasks depends on the way data is coupled with noise. A recent approach uses minibatch optimal transport (OT) to reassign noise-data pairs in each training step to streamline sampling trajectories and thus accelerate inference. However, its optimization is restricted to individual minibatches, limiting its effectiveness on large datasets. To address this shortcoming, we introduce LOOM-CFM (Looking Out Of Minibatch-CFM), a novel method to extend the scope of minibatch OT by preserving and optimizing these assignments across minibatches over training time. Our approach demonstrates consistent improvements in the sampling speed-quality trade-off across multiple datasets. LOOM-CFM also enhances distillation initialization and supports high-resolution synthesis in latent space training.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5240
Loading