DeepCaps: Going Deeper With Capsule Networks.Download PDFOpen Website

2019 (modified: 10 Nov 2022)CVPR2019Readers: Everyone
Abstract: Capsule Network is a promising concept in deep learning, yet its true potential is not fully realized thus far, providing sub-par performance on several key benchmark datasets with complex data. Drawing intuition from the success achieved by Convolutional Neural Networks (CNNs) by going deeper, we introduce DeepCaps, a deep capsule network architecture which uses a novel 3D convolution based dynamic routing algorithm. With DeepCaps, we surpass the state-of-the-art capsule domain networks results on CIFAR10, SVHN and Fashion MNIST, while achieving a 68% reduction in the number of parameters. Further, we propose a class independent decoder network, which strengthens the use of reconstruction loss as a regularization term. This leads to an interesting property of the decoder, which allows us to identify and control the physical attributes of the images represented by the instantiation parameters.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview