Keywords: Reinforcement Learning, Safe Transfer, Adversarial Training, Robustness
TL;DR: This paper trains agents under action disturbances for a safe and robust transfer between environments with different dynamics, preventing safety violations after the transfer.
Abstract: Reinforcement learning (RL) often relies on trial and error, which may cause undesirable outcomes. As a result, standard RL is inappropriate for safety-critical applications. To address this issue, one may train a safe agent in a controlled environment (where safety violations are allowed) and then transfer it to the real world (where safety violations may have disastrous consequences). Prior work has made this transfer safe as long as the new environment preserves the safety-related dynamics. However, in most practical applications, differences or shifts in dynamics between the two environments are inevitable, potentially leading to safety violations after the transfer. This work aims to guarantee safety even when the new environment has different (safety-related) dynamics. In other words, we aim to make the process of safe transfer robust. Our methodology (1) robustifies an agent in the controlled environment and (2) provably provides---under mild assumption---a safe transfer to new environments. The empirical evaluation shows that this method yields policies that are robust against changes in dynamics, demonstrating safety after transfer to a new environment.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11822
Loading