The common Stability Mechanism behind most Self-Supervised Learning Approaches

23 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: Self supervised learning, contrastive learning, non-contrastive self supervised learning, meta study
TL;DR: Framework to explain embedding collapse in contrastive and non-contrastive self-supervised representation learning
Abstract: Last couple of years have witnessed a tremendous progress in self-supervised learning (SSL), the success of which can be attributed to the introduction of useful inductive biases in the learning process to learn meaningful visual representations while avoiding collapse. These inductive biases and constraints manifest themselves in the form of different optimization formulations in the SSL techniques, e.g. by utilizing negative examples in a contrastive formulation, or exponential moving average and predictor in BYOL and SimSiam. In this paper, we provide a framework to explain the stability mechanism of these different SSL techniques: i) we discuss the working mechanism of contrastive techniques like SimCLR, non-contrastive techniques like BYOL, SWAV, SimSiam, Barlow Twins, and DINO; ii) we provide an argument that despite different formulations these methods implicitly optimize a similar objective function, i.e. minimizing the magnitude of the expected representation over all data samples, or the mean of the data distribution, while maximizing the magnitude of the expected representation of individual samples over different data augmentations; iii) we provide mathematical and empirical evidence to support our framework. We formulate different hypotheses and test them using the Imagenet100 dataset.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7816
Loading