Video Super-Resolution via Deep Draft-Ensemble LearningDownload PDFOpen Website

2015 (modified: 10 Nov 2022)ICCV 2015Readers: Everyone
Abstract: We propose a new direction for fast video super-resolution (VideoSR) via a SR draft ensemble, which is defined as the set of high-resolution patch candidates before final image deconvolution. Our method contains two main components -- i.e., SR draft ensemble generation and its optimal reconstruction. The first component is to renovate traditional feedforward reconstruction pipeline and greatly enhance its ability to compute different super resolution results considering large motion variation and possible errors arising in this process. Then we combine SR drafts through the nonlinear process in a deep convolutional neural network (CNN). We analyze why this framework is proposed and explain its unique advantages compared to previous iterative methods to update different modules in passes. Promising experimental results are shown on natural video sequences.
0 Replies

Loading