Abstract: Convex relaxations of multilabel problems have been demonstrated to produce provably optimal or near-optimal solutions to a variety of computer vision problems. Yet, they are of limited practical use as they require a fine discretization of the label space, entailing a huge demand in memory and runtime. In this work, we propose the first sublabel accurate convex relaxation for vectorial multilabel problems. Our key idea is to approximate the dataterm in a piecewise convex (rather than piecewise linear) manner. As a result we have a more faithful approximation of the original cost function that provides a meaningful interpretation for fractional solutions of the relaxed convex problem.
0 Replies
Loading