Abstract: Author Summary It has recently been shown that STDP installs in ensembles of pyramidal cells with lateral inhibition networks for Bayesian inference that are theoretically optimal for the case of stationary spike input patterns. We show here that if the experimentally found lateral excitatory connections between pyramidal cells are taken into account, theoretically optimal probabilistic models for the prediction of time-varying spike input patterns emerge through STDP. Furthermore a rigorous theoretical framework is established that explains the emergence of computational properties of this important motif of cortical microcircuits through learning. We show that the application of an idealized form of STDP approximates in this network motif a generic process for adapting a computational model to data: expectation-maximization. The versatility of computations carried out by these ensembles of pyramidal cells and the speed of the emergence of their computational properties through STDP is demonstrated through a variety of computer simulations. We show the ability of these networks to learn multiple input sequences through STDP and to reproduce the statistics of these inputs after learning.
0 Replies
Loading