Unsupervised Semantic Scene Labeling for Streaming DataDownload PDFOpen Website

2017 (modified: 10 Nov 2022)CVPR 2017Readers: Everyone
Abstract: We introduce an unsupervised semantic scene labeling approach that continuously learns and adapts semantic models discovered within a data stream. While closely related to unsupervised video segmentation, our algorithm is not designed to be an early video processing strategy that produces coherent over-segmentations, but instead, to directly learn higher-level semantic concepts. This is achieved with an ensemble-based approach, where each learner clusters data from a local window in the data stream. Overlapping local windows are processed and encoded in a graph structure to create a label mapping across windows and reconcile the labelings to reduce unsupervised learning noise. Additionally, we iteratively learn a merging threshold criteria from observed data similarities to automatically determine the number of learned labels without human provided parameters. Experiments show that our approach semantically labels video streams with a high degree of accuracy, and achieves a better balance of under and over-segmentation entropy than existing video segmentation algorithms given similar numbers of label outputs.
0 Replies

Loading