Pair-activity classification by bi-trajectories analysisDownload PDFOpen Website

2008 (modified: 26 Jan 2025)CVPR 2008Readers: Everyone
Abstract: In this paper, we address the pair-activity classification problem, which explores the relationship between two active objects based on their motion information. Our contributions are three-fold. First, we design a set of features, e.g., causality ratio and feedback ratio based on the Granger Causality Test (GCT), for describing the pair-activities encoded as trajectory pairs. These features along with conventional velocity and position features are essentially of multi-modalities, and may be greatly different in scale and importance. To make full use of them, we then present a novel feature normalization procedure to learn the coefficients for weighting these features by maximizing the discriminating power measured by weighted correlation. Finally, we collected a pair-activity database of five categories, each of which consists of about 170 instances. The extensive experiments on this database validate the effectiveness of the designed features for pair-activity representation, and also demonstrate that the proposed feature normalization procedure greatly boosts the pair-activity classification accuracy.
0 Replies

Loading