Defective Convolutional Layers Learn Robust CNNsDownload PDF

25 Sep 2019 (modified: 24 Dec 2019)ICLR 2020 Conference Blind SubmissionReaders: Everyone
  • Original Pdf: pdf
  • Keywords: adversarial examples, robust machine learning, cnn structure, deep feature representations
  • TL;DR: We propose a technique that modifies CNN structures to make predictions more relying on shape information and improve the defense ability against several types of attack.
  • Abstract: Robustness of convolutional neural networks has recently been highlighted by the adversarial examples, i.e., inputs added with well-designed perturbations which are imperceptible to humans but can cause the network to give incorrect outputs. Recent research suggests that the noises in adversarial examples break the textural structure, which eventually leads to wrong predictions by convolutional neural networks. To help a convolutional neural network make predictions relying less on textural information, we propose defective convolutional layers which contain defective neurons whose activations are set to be a constant function. As the defective neurons contain no information and are far different from the standard neurons in its spatial neighborhood, the textural features cannot be accurately extracted and the model has to seek for other features for classification, such as the shape. We first show that predictions made by the defective CNN are less dependent on textural information, but more on shape information, and further find that adversarial examples generated by the defective CNN appear to have semantic shapes. Experimental results demonstrate the defective CNN has higher defense ability than the standard CNN against various types of attack. In particular, it achieves state-of-the-art performance against transfer-based attacks without applying any adversarial training.
  • Code:
8 Replies