Less is More: Learning to Refine Dialogue History for Personalized Dialogue GenerationDownload PDF


08 Mar 2022 (modified: 05 May 2023)NAACL 2022 Conference Blind SubmissionReaders: Everyone
Paper Link: https://openreview.net/forum?id=ZalGGlhMB6A
Paper Type: Long paper (up to eight pages of content + unlimited references and appendices)
Abstract: Personalized dialogue systems explore the problem of generating responses that are consistent with the user's personality, which has raised much attention in recent years. Existing personalized dialogue systems have tried to extract user profiles from dialogue history to guide personalized response generation. Since the dialogue history is usually long and noisy, most existing methods truncate the dialogue history to model the user's personality. Such methods can generate some personalized responses, but a large part of dialogue history is wasted, leading to sub-optimal performance of personalized response generation. In this work, we propose to refine the user dialogue history on a large scale, based on which we can handle more dialogue history and obtain more abundant and accurate persona information. Specifically, we design an MSP model which consists of three personal information refiners and a personalized response generator. With these multi-level refiners, we can sparsely extract the most valuable information (tokens) from the dialogue history and leverage other similar users' data to enhance personalization. Experimental results on two real-world datasets demonstrate the superiority of our model in generating more informative and personalized responses.
Copyright Consent Signature (type Name Or NA If Not Transferrable): Hanxun Zhong
Copyright Consent Name And Address: School of Information, Renmin University of China, Beijing, China
0 Replies