Abstract: High-resolution Hi-C contact matrices reveal the detailed three-dimensional architecture of the genome, but high-coverage experimental Hi-C data are expensive to generate. Simultaneously, chromatin structure analyses struggle with extremely sparse contact matrices. To address this problem, computational methods to enhance low-coverage contact matrices have been developed, but existing methods are largely based on resolution enhancement methods for natural images and hence often employ models that do not distinguish between biologically meaningful contacts, such as loops and other stochastic contacts.