Jailbreak Antidote: Runtime Safety-Utility Balance via Sparse Representation Adjustment in Large Language Models

ICLR 2025 Conference Submission1906 Authors

19 Sept 2024 (modified: 26 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models, Jailbreak Defense, Safety-Utility Balance, Internal State Manipulation, Sparse Representation Adjustment
Abstract: As large language models (LLMs) become integral to various applications, ensuring both their safety and utility is paramount. Jailbreak attacks, which manipulate LLMs into generating harmful content, pose significant challenges to this balance. Existing defenses, such as prompt engineering and safety fine-tuning, often introduce computational overhead, increase inference latency, and lack runtime flexibility. Moreover, overly restrictive safety measures can degrade model utility by causing refusals of benign queries. In this paper, we introduce *Jailbreak Antidote*, a method that enables real-time adjustment of LLM safety preferences by manipulating a sparse subset of the model's internal states during inference. By shifting the model's hidden representations along a safety direction with varying strengths, we achieve flexible control over the safety-utility balance without additional token overhead or inference delays. Our analysis reveals that safety-related information in LLMs is sparsely distributed; adjusting approximately *5\%* of the internal state is as effective as modifying the entire state. Extensive experiments on nine LLMs (ranging from 2 billion to 72 billion parameters), evaluated against ten jailbreak attack methods and compared with six defense strategies, validate the effectiveness and efficiency of our approach. By directly manipulating internal states during reasoning, *Jailbreak Antidote* offers a lightweight, scalable solution that enhances LLM safety while preserving utility, opening new possibilities for real-time safety mechanisms in widely-deployed AI systems.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1906
Loading