Reverse Stable Diffusion: What prompt was used to generate this image?

17 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: diffusion models, prompt prediction, reverse diffusion modeling, curriculum learning, domain-adaptive kernel learning
TL;DR: We introduce the task of predicting the text prompt given an image generated by a generative diffusion model, and propose a novel learning framework comprising of a joint prompt regression and multi-label vocabulary classification objective.
Abstract: Text-to-image diffusion models such as Stable Diffusion have recently attracted the interest of many researchers, and inverting the diffusion process can play an important role in better understanding the generative process and how to engineer prompts in order to obtain the desired images. To this end, we introduce the new task of predicting the text prompt given an image generated by a generative diffusion model. We combine a series of white-box and black-box models (with and without access to the weights of the diffusion network) to deal with the proposed task. We propose a novel learning framework comprising of a joint prompt regression and multi-label vocabulary classification objective that generates improved prompts. To further improve our method, we employ a curriculum learning procedure that promotes the learning of image-prompt pairs with lower labeling noise (i.e. that are better aligned), and an unsupervised domain-adaptive kernel learning method that uses the similarities between samples in the source and target domains as extra features. We conduct experiments on the DiffusionDB data set, predicting text prompts from images generated by Stable Diffusion. Our novel learning framework produces excellent results on the aforementioned task, yielding the highest gains when applied on the white-box model. In addition, we make an interesting discovery: training a diffusion model on the prompt generation task can make the model generate images that are much better aligned with the input prompts, when the model is directly reused for text-to-image generation. Our code is publicly available for download at https://github.com/anonymous.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 881
Loading