HingePlace: Harnessing the neural thresholding behavior to optimize Transcranial Electrical Stimulation

Published: 01 Jan 2025, Last Modified: 11 Apr 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Transcranial Electrical Stimulation (tES) is a neuromodulation technique that utilizes electrodes on the scalp to stimulate target brain regions. tES has shown promise in treating many neurological conditions, such as stroke rehabilitation and chronic pain. Several electrode placement algorithms have been proposed to optimize tES-based therapies by designing multi-electrode montages that create focal neural responses. We first extend a well-known unification result by Fernandez-Corazza et al. to unify all major traditional electrode placement algorithms. We utilize this unification result to identify a common restriction among traditional electrode placement algorithms: they do not harness the thresholding behavior of neural response. Consequently, these algorithms only partially harness the properties of neural response to optimize tES, particularly increasing the focality of neural response. We propose a new electrode placement algorithm, HingePlace, that utilizes a symmetrized hinge loss to harness the thresholding behavior of neural response. We extensively compare the HingePlace algorithm with traditional electrode placement algorithms in two simulation platforms. Across both platforms, we find that HingePlace-designed montages consistently generate more focal neural responses -- by as much as 60% -- than the electrode montages designed by traditional electrode placement algorithms.
Loading