CELL your Model: Contrastive Explanations for Large Language Models

27 Sept 2024 (modified: 16 Jan 2025)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Contrastive Explanations, Large Language Models
TL;DR: This paper offers a framework for explaining why Large Language Models respond to prompts with a particular response through contrastive explanations.
Abstract: The advent of black-box deep neural network classification models has sparked the need to explain their decisions. However, in the case of generative AI such as large language models (LLMs), there is no class prediction to explain. Rather, one can ask why an LLM output a particular response to a given prompt. In this paper, we answer this question by proposing, to the best of our knowledge, the first contrastive explanation methods requiring simply black-box/query access. Our explanations suggest that an LLM outputs a reply to a given prompt because if the prompt was slightly modified, the LLM would have given a different response that is either less preferable or contradicts the original response. The key insight is that contrastive explanations simply require a scoring function that has meaning to the user and not necessarily a specific real valued quantity (viz. class label). We offer two algorithms for finding contrastive explanations: i) A myopic algorithm, which although effective in creating contrasts, requires many model calls and ii) A budgeted algorithm, our main algorithmic contribution, which intelligently creates contrasts adhering to a query budget, necessary for longer contexts. We show the efficacy of these methods on diverse natural language tasks such as open-text generation, automated red teaming, and explaining conversational degradation.
Supplementary Material: zip
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8368
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview