Your Weak LLM is Secretly a Strong Teacher for Alignment

Published: 22 Jan 2025, Last Modified: 12 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: large language models; alignment
Abstract: The burgeoning capabilities of large language models (LLMs) have underscored the need for alignment to ensure these models act in accordance with human values and intentions. Existing alignment frameworks present constraints either in the form of expensive human effort or high computational costs. This paper explores a promising middle ground, where we employ a weak LLM that is significantly less resource-intensive than top-tier models, yet offers more automation than purely human feedback. We present a systematic study to evaluate and understand weak LLM's ability to generate feedback for alignment. Our empirical findings demonstrate that weak LLMs can provide feedback that rivals or even exceeds that of fully human-annotated data. Our study indicates a minimized impact of model size on feedback efficacy, shedding light on a scalable and sustainable alignment strategy. To deepen our understanding of alignment under weak LLM feedback, we conduct a series of qualitative and quantitative analyses, offering novel insights into the quality discrepancies between human feedback vs. weak LLM feedback. Code is publicly available at https://github.com/deeplearning-wisc/weak_llm_teacher.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2625
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview