Regularization-based pruning of irrelevant weights in deep neural architectures

Published: 01 Jan 2023, Last Modified: 16 May 2025Appl. Intell. 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Deep neural networks exploiting million parameters are currently the norm. This is a potential issue because of the great number of computations needed for training, and the possible loss of generalization performance of overparameterized networks. We propose in this paper a method for learning sparse neural topologies via a regularization approach that identifies nonrelevant weights in any type of layer (i.e., convolutional, fully connected, attention and embedding ones) and selectively shrinks their norm while performing a standard back-propagation update for relevant layers. This technique, which is an improvement of classical weight decay, is based on the definition of a regularization term that can be added to any loss function regardless of its form, resulting in a unified general framework exploitable in many different contexts. The actual elimination of parameters identified as irrelevant is handled by an iterative pruning algorithm.
Loading