Uncovering Challenges of Solving the Continuous Gromov-Wasserstein Problem

ICLR 2025 Conference Submission6342 Authors

26 Sept 2024 (modified: 02 Dec 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Optimal Transport, Gromov-Wasserstein, Generative Modelling, Benchmark
Abstract: Recently, the Gromov-Wasserstein Optimal Transport (GWOT) problem has attracted the special attention of the ML community. In this problem, given two distributions supported on two (possibly different) spaces, one has to find the most isometric map between them. In the discrete variant of GWOT, the task is to learn an assignment between given discrete sets of points. In the more advanced continuous formulation, one aims at recovering a parametric mapping between unknown continuous distributions based on i.i.d. samples derived from them. The clear geometrical intuition behind the GWOT makes it a natural choice for several practical use cases, giving rise to a number of proposed solvers. Some of them claim to solve the continuous version of the problem. At the same time, GWOT is notoriously hard, both theoretically and numerically. Moreover, all existing continuous GWOT solvers still heavily rely on discrete techniques. Natural questions arise: to what extent existing methods unravel GWOT problem, what difficulties they encounter, and under which conditions they are successful. Our benchmark paper is an attempt to answer these questions. We specifically focus on the continuous GWOT as the most interesting and debatable setup. We crash-test existing continuous GWOT approaches on different scenarios, carefully record and analyze the obtained results, and identify issues. Our findings experimentally testify that the scientific community is still missing a reliable continuous GWOT solver, which necessitates further research efforts. As the first step in this direction, we propose a new continuous GWOT method which does not rely on discrete techniques and partially solves some of the problems of the competitors.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6342
Loading