Budgeted Training for Vision TransformerDownload PDF

Published: 01 Feb 2023, 19:21, Last Modified: 23 Feb 2023, 07:37ICLR 2023 posterReaders: Everyone
Abstract: The superior performances of Vision Transformers often come with higher training costs. Compared to their CNN counterpart, Transformer models are hungry for large-scale data and their training schedules are usually prolonged. This sets great restrictions on training Transformers with limited resources, where a proper trade-off between training cost and model performance is longed. In this paper, we address the problem by proposing a framework that enables the training process under \textit{any training budget} from the perspective of model structure, while achieving competitive model performances. Specifically, based on the observation that Transformer exhibits different levels of model redundancies at different training stages, we propose to dynamically control the activation rate of the model structure along the training process and meet the demand on the training budget by adjusting the duration on each level of model complexity. Extensive experiments demonstrate that our framework is applicable to various Vision Transformers, and achieves competitive performances on a wide range of training budgets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
13 Replies