Abstract: To make predictions on unseen classes, few-shot segmentation becomes a research focus recently. However, most methods build on pixel-level annotation requiring quantity of manual work. Moreover, inherent information on same-category objects to guide segmentation could have large diversity in feature representation due to differences in size, appearance, layout, and so on. To tackle these problems, we present an active-reference network (ARNet) for few-shot segmentation. The proposed active-reference mechanism not only supports accurately cooccurrent objects in either support or query images, but also relaxes high constraint on pixel-level labeling, allowing for weakly boundary labeling. To extract more intrinsic feature representation, a category-modulation module (CMM) is further applied to fuse features extracted from multiple support images, thus forgetting useless and enhancing contributive information. Experiments on PASCAL-5 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sup> dataset show the proposed method achieves a m-IOU score of 56.5% for 1-shot and 59.8% for 5-shot segmentation, being 0.5% and 1.3% higher than current state-of-the-art method.
0 Replies
Loading