How do Variational Autoencoders Learn? Insights from Representational SimilarityDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: variational autoencoders, VAEs, CKA, Procrustes, representation learning, representational similarity, learning dynamics
TL;DR: How VAEs' representations converge during learning
Abstract: The ability of Variational Autoencoders (VAEs) to learn disentangled representations has made them popular for practical applications. However, their behaviour is not yet fully understood. For example, the questions of when they can provide disentangled representations, or suffer from posterior collapse are still areas of active research. Despite this, there are no layerwise comparisons of the representations learned by VAEs, which would further our understanding of these models. In this paper, we thus look into the internal behaviour of VAEs using representational similarity techniques. Specifically, using the CKA and Procrustes similarities, we found that the encoders' representations are learned long before the decoders', and this behaviour is independent of hyperparameters, learning objectives, and datasets. Moreover, the encoders' representations in all but the mean and variance layers are similar across hyperparameters and learning objectives.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Generative models
Supplementary Material: zip
17 Replies

Loading