Quantum Acceleration of Infinite Horizon Average-Reward Reinforcement Learning

Published: 01 Jan 2023, Last Modified: 27 Sept 2024CoRR 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This paper investigates the potential of quantum acceleration in addressing infinite horizon Markov Decision Processes (MDPs) to enhance average reward outcomes. We introduce an innovative quantum framework for the agent's engagement with an unknown MDP, extending the conventional interaction paradigm. Our approach involves the design of an optimism-driven tabular Reinforcement Learning algorithm that harnesses quantum signals acquired by the agent through efficient quantum mean estimation techniques. Through thorough theoretical analysis, we demonstrate that the quantum advantage in mean estimation leads to exponential advancements in regret guarantees for infinite horizon Reinforcement Learning. Specifically, the proposed Quantum algorithm achieves a regret bound of $\tilde{\mathcal{O}}(1)$, a significant improvement over the $\tilde{\mathcal{O}}(\sqrt{T})$ bound exhibited by classical counterparts.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview