DIPathMamba: A domain-incremental weakly supervised state space model for pathology image segmentation
Abstract: Highlights•Supervised models need pixel labels, static models struggle with multi-domain data.•DIPathMamba for multi-domain pathology segmentation using only image-level labels.•Introducing Contrastive Mamba Block to explore dual-granularity features in pathology.•Designing a Domain Parameter Constraint Model to share info and constrain parameters.•Proposing CIDSL to utilize limited labels and guide parameter learning in domains.
Loading