Adversaries Can Misuse Combinations of Safe Models

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: safety, misuse, adversary, combining models, attacks, hacking
Abstract: Developers try to evaluate whether an AI system can accomplish malicious tasks before releasing it; for example, they might test whether a model enables cyberoffense, user manipulation, or bioterrorism. In this work, we show that individually testing models for such misuse is inadequate; adversaries can misuse combinations of models even when each individual model is safe. The adversary accomplishes this by first decomposing tasks into subtasks, then solving each subtask with the best-suited model. For example, an adversary might solve challenging-but-benign subtasks with an aligned frontier model, and easy-but-malicious subtasks with a weaker misaligned model. We study two decomposition methods: manual decomposition where a human identifies a natural decomposition of a task, and automated decomposition where a weak model generates benign tasks for a frontier model to solve, then uses the solutions in-context to solve the original task. Using these decompositions, we empirically show that adversaries can create vulnerable code, explicit images, python scripts for hacking, and manipulative tweets at much higher rates with combinations of models than either individual model. Our work suggests that even perfectly-aligned frontier systems can enable misuse without ever producing malicious outputs, and that red-teaming efforts should extend beyond single models in isolation.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5452
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview