Abstract: This paper considers correlation clustering on unweighted complete graphs. We give a combinatorial algorithm that returns a single clustering solution that is simultaneously O(1)-approximate for all š_p-norms of the disagreement vector; in other words, a combinatorial O(1)-approximation of the all-norms objective for correlation clustering. This is the first proof that minimal sacrifice is needed in order to optimize different norms of the disagreement vector. In addition, our algorithm is the first combinatorial approximation algorithm for the šā-norm objective, and more generally the first combinatorial algorithm for the š_p-norm objective when 1 < p < ā. It is also faster than all previous algorithms that minimize the š_p-norm of the disagreement vector, with run-time O(n^Ļ), where O(n^Ļ) is the time for matrix multiplication on n Ć n matrices. When the maximum positive degree in the graph is at most Ī, this can be improved to a run-time of O(nβ log n).
Loading