Gaussian Multiple and Random Access Channels: Finite-Blocklength AnalysisDownload PDFOpen Website

Published: 01 Jan 2021, Last Modified: 12 May 2023IEEE Trans. Inf. Theory 2021Readers: Everyone
Abstract: This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and a maximum likelihood decoder, the derived MAC bound on each transmitter’s rate matches the MolavianJazi-Laneman bound (2015) in its first- and second-order terms, improving the remaining terms to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\frac {1}2\frac {\log {n}}{n}+{O} \left ({\frac {1}{n}}\right)$ </tex-math></inline-formula> bits per channel use. The result <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\vphantom {\sum ^{R}}$ </tex-math></inline-formula> then extends to a RAC model in which neither the encoders nor the decoder knows which of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${K}$ </tex-math></inline-formula> possible transmitters are active. In the proposed rateless coding strategy, decoding occurs at a time <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${n}_{t}$ </tex-math></inline-formula> that depends on the decoder’s estimate <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${t}$ </tex-math></inline-formula> of the number of active transmitters <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${k}$ </tex-math></inline-formula> . Single-bit feedback from the decoder to all encoders at each potential decoding time <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${n}_{i}$ </tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${i} \leq {t}$ </tex-math></inline-formula> , informs the encoders when to stop transmitting. For this RAC model, the proposed code achieves the same first-, second-, and third-order performance as the best known result for the Gaussian MAC in operation.
0 Replies

Loading