Mitigating Dialogue Hallucination for Large Vision Language Models via Adversarial Instruction Tuning
Keywords: Large Vision Language Model, Large Multi-modal Model, Hallucination, Adversarial Learning
Abstract: Mitigating hallucinations of Large Vision Language Models (LVLMs) is crucial to enhance their reliability for general-purpose assistants. This paper shows that such hallucinations of LVLMs can be significantly exacerbated by preceding user-system dialogues. To precisely measure this, we first present an evaluation benchmark by extending popular multi-modal benchmark datasets with prepended hallucinatory dialogues powered by our novel Adversarial Question Generator (AQG), which can automatically generate image-related yet adversarial dialogues by adopting adversarial attacks on LVLMs. On our benchmark, the zero-shot performance of state-of-the-art LVLMs drops significantly for both the VQA and Captioning tasks. Next, we further reveal this hallucination is mainly due to the prediction bias toward preceding dialogues rather than visual content. To reduce this bias, we propose Adversarial Instruction Tuning (AIT) that robustly fine-tunes LVLMs against hallucinatory dialogues. Extensive experiments show our proposed approach successfully reduces dialogue hallucination while maintaining performance.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7515
Loading