Fundamental Limits on Energy-Delay-Accuracy of In-Memory Architectures in Inference ApplicationsDownload PDFOpen Website

2022 (modified: 01 Oct 2022)IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2022Readers: Everyone
Abstract: This article obtains fundamental limits on the computational precision of in-memory computing architectures (IMCs). An IMC noise model and associated signal-to-noise ratio (SNR) metrics are defined and their interrelationships analyzed to show that the accuracy of IMCs is fundamentally limited by the compute SNR ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mathrm {SNR}}_{a}$ </tex-math></inline-formula> ) of its analog core, and that activation, weight, and output (ADC) precision needs to be assigned appropriately for the final output SNR ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mathrm {SNR}}_{T}$ </tex-math></inline-formula> ) to approach <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mathrm {SNR}}_{a}$ </tex-math></inline-formula> . The minimum precision criterion (MPC) is proposed to minimize the analog-to-digital converter (ADC) precision and hence its overhead. Three in-memory compute models—charge summing (QS), current summing (IS), and charge redistribution (QR)—are shown to underlie most known IMCs. Noise, energy, and delay expressions for the compute models are developed and employed to derive expressions for the SNR, ADC precision, energy, and latency of IMCs. The compute SNR expressions are validated via Monte Carlo simulations in a 65 nm CMOS process. For a 512 row SRAM array, it is shown that: 1) IMCs have an upper bound on their maximum achievable <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mathrm {SNR}}_{a}$ </tex-math></inline-formula> due to constraints on energy, area and voltage swing, and this upper bound reduces with technology scaling for QS-based architectures; 2) MPC enables <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mathrm {SNR}}_{T}$ </tex-math></inline-formula> to approach <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\mathrm {SNR}}_{a}$ </tex-math></inline-formula> to be realized with minimal ADC precision; and 3) QS-based (QR-based) architectures are preferred for low (high) compute SNR scenarios.
0 Replies

Loading