Abstract: Contemporary cities are fractured by a growing number of barriers, such as on-going construction and infrastructure damages, which endanger pedestrian safety. Automated detection and recognition of such barriers from visual data has been of particular concern to the research community in recent years. Deep Learning (DL) algorithms are now the dominant approach in visual data analysis, achieving excellent results in a wide range of applications, including obstacle detection. However, explaining the underlying operations of DL models remains a key challenge in gaining significant understanding on how they arrive at their decisions. The use of heatmaps that highlight the focal points in input images that helped the models reach their predictions has emerged as a form of post-hoc explainability for such models. In an effort to gain insights into the learning process of DL models, we studied the similarities between heatmaps generated by a number of architectures trained to detect obstacl
Loading