Decision Pre-Trained Transformer is a Scalable In-Context Reinforcement Learner

ICLR 2026 Conference Submission19649 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: in-context reinforcement learning
Abstract: Recent progress in in-context reinforcement learning (ICRL) has demonstrated its potential for training generalist agents that can acquire new tasks directly at inference. Algorithm Distillation (AD) pioneered this paradigm and was subsequently scaled to multi-domain settings, although its ability to generalize to unseen tasks remained limited. The Decision Pre-Trained Transformer (DPT) was introduced as an alternative, showing stronger in-context reinforcement learning abilities in simplified domains, but its scalability had not been established. In this work, we extend DPT to diverse multi-domain environments, applying Flow Matching as a natural training choice that preserves its interpretation as Bayesian posterior sampling. As a result, we obtain an agent trained across hundreds of diverse tasks that achieves clear gains in generalization to the held-out test set. This agent improves upon prior AD scaling and demonstrates stronger performance in both online and offline inference, reinforcing ICRL as a viable alternative to expert distillation for training generalist agents.
Primary Area: reinforcement learning
Submission Number: 19649
Loading