ReG-NAS: Graph Neural Network Architecture Search using Regression Proxy TaskDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Neural Architecture Search, GNN, Machine Learning
Abstract: Neural Architecture Search (NAS) has become a focus that has been extensively researched in recent years. Innovative achievements are yielded from the area like convolutional neural networks (CNN), recurrent neural networks (RNN) and so on. However, research on NAS for graph neural networks (GNN) is still in a preliminary stage. Because of the special structure of graph data, some conclusions drew from CNN cannot be directly applied to GNN. At the same time, for NAS, the models' ranking stability is of great importance for it reflects the reliability of the NAS performance. Unfortunately, little research attention has been paid to it, making it a pitfall in the development of NAS research. In this paper, we proposed a novel NAS pipeline, ReG-NAS, which balances stability, reliability and time cost to search the best GNN architecture. Besides, for the first time, we systematically analyzed factors that will affect models' ranking stability in a given search space, which can be used as a guideline for subsequent studies. Our codes are available at https://anonymous.4open.science/r/ReG-NAS-4D21
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
8 Replies

Loading