Lightning-Fast Image Inversion and Editing for Text-to-Image Diffusion Models

ICLR 2025 Conference Submission1900 Authors

19 Sept 2024 (modified: 20 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Deterministic Image Inversion, Image Editing, Diffusion Models, Image Generation
TL;DR: A new image inversion method for text-to-image diffusion models, that introduces real-time editing by employing Newton-Rahson numerical scheme
Abstract: Diffusion inversion is the problem of taking an image and a text prompt that describes it and finding a noise latent that would generate the exact same image. Most current deterministic inversion techniques operate by approximately solving an implicit equation and may converge slowly or yield poor reconstructed images. We formulate the problem by finding the roots of an implicit equation and design a method to solve it efficiently. Our solution is based on Newton-Raphson (NR), a well-known technique in numerical analysis. We show that a vanilla application of NR is computationally infeasible while naively transforming it to a computationally tractable alternative tends to converge to out-of-distribution solutions, resulting poor reconstruction and editing. We therefore derive an efficient guided formulation that fastly converges and provides high-quality reconstructions and editing. We showcase our method on real image editing with three popular open-sourced diffusion models: Stable Diffusion, SDXL-Turbo and Flux with different deterministic schedulers. Our solution, Guided Newton-Raphson Inversion, inverts an image within 0.4 sec (on an A100 GPU) for few-step models (SDXL-Turbo and Flux.1), opening the door for interactive image editing. We further show improved results in image interpolation and generation of rare objects.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1900
Loading