Efficacy of Language Model Self-Play in Non-Zero-Sum Games

23 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: language models, self-play, multi-agent, dialogue, reasoning
TL;DR: We analyze the performance of language model self-play in competitive and cooperative games
Abstract: Game-playing agents like AlphaGo have achieved superhuman performance through self-play, which is theoretically guaranteed to yield optimal policies in competitive games. However, most language tasks are partially or fully cooperative, so it is an open question whether techniques like self-play can effectively be used to improve language models. We empirically investigate this question in a negotiation game setting known as Deal or No Deal (DoND). Crucially, the objective in DoND can be modified to produce a fully cooperative game, a strictly competitive one, or anything in between. We finetune language models in self-play over multiple rounds of filtered behavior cloning in DoND for each of these objectives and evaluate them in self-play and in collaboration with humans. We find that language models improve substantially in self-play, achieving 14-17x higher scores in task reward after finetuning. Further, the trained models generalize to both cooperation and competition with humans, scoring 2.5-6x higher than base models. We view these results as an early promising sign for language model self-play in cooperative settings, despite a lack of theoretical guarantees.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3210
Loading