Holographic 3D Particle Imaging With Model-Based Deep NetworkDownload PDFOpen Website

2021 (modified: 23 Nov 2022)IEEE Trans. Computational Imaging 2021Readers: Everyone
Abstract: Gabor holography is an amazingly simple and effective approach for three-dimensional (3D) imaging. However, it suffers from a DC term, twin-image entanglement, and defocus noise. The conventional approach for solving this problem is either using an off-axis setup, or compressive holography. The former sacrifices simplicity, and the latter is computationally demanding and time-consuming. To cope with this problem, we propose a model-based holographic network (MB-HoloNet) for three-dimensional particle imaging. The free-space point spread function (PSF), which is essential for hologram reconstruction, is used as a prior in the MB-HoloNet. All parameters are learned in an end-to-end fashion. The physical prior makes the network efficient and stable for both localization and 3D particle size reconstructions.
0 Replies

Loading