Keywords: offline model-based optimization, bi-level optimization
TL;DR: We propose a simple and novel method called parallel-mentoring to improve the ensemble robustness by facilitating the exchange of weak ranking supervision signals among proxies.
Abstract: We study offline model-based optimization to maximize a black-box objective function with a static dataset of designs and scores. These designs encompass a variety of domains, including materials, robots, DNA sequences, and proteins. A common approach trains a proxy on the static dataset and performs gradient ascent to obtain new designs. However, this often results in poor designs due to the proxy inaccuracies for out-of-distribution designs. Recent studies indicate that (a) gradient ascent with a mean ensemble of proxies generally outperforms simple gradient ascent, and (b) a trained proxy provides weak ranking supervision signals for design selection. Motivated by (a) and (b), we propose $\textit{parallel-mentoring}$ as an effective and novel method that facilitates mentoring among proxies, creating a more robust ensemble to mitigate the out-of-distribution issue. We focus on the three-proxy case in the main paper and our method consists of two modules. The first module, $\textit{voting-based pairwise supervision}$, operates on three parallel proxies and captures their ranking supervision signals as pairwise comparison labels. These labels are combined through majority voting to generate consensus labels, which incorporates ranking supervision signals from all proxies and enables mutual mentoring. Yet, label noise arises due to possible incorrect consensus. To alleviate this, we introduce an $\textit{adaptive soft-labeling}$ module with soft-labels initialized as consensus labels. Based on bi-level optimization, this module fine-tunes proxies in the inner level and learns more accurate labels in the outer level to adaptively mentor proxies, resulting in a more robust ensemble. Experiments validate the effectiveness of our method. Our code is available here.
Supplementary Material: zip
Submission Number: 51
Loading