Exploiting Fairness to Enhance Sensitive Attributes ReconstructionDownload PDF

24 Aug 2022 (modified: 22 Oct 2023)SaTML 2023Readers: Everyone
Keywords: Reconstruction attack, privacy, fairness, machine learning, constraint programming
Abstract: In recent years, a growing body of work has emerged on how to learn machine learning models under fairness constraints, often expressed with respect to some sensitive attributes. In this work, we consider the setting in which an adversary has black-box access to a target model and show that information about this model's fairness can be exploited by the adversary to enhance his reconstruction of the sensitive attributes of the training data. More precisely, we propose a generic reconstruction correction method, which takes as input an initial guess made by the adversary and corrects it to comply with some user-defined constraints (such as the fairness information) while minimizing the changes in the adversary's guess. The proposed method is agnostic to the type of target model, the fairness-aware learning method as well as the auxiliary knowledge of the adversary. To assess the applicability of our approach, we have conducted a thorough experimental evaluation on two state-of-the-art fair learning methods, using four different fairness metrics with a wide range of tolerances and with three datasets of diverse sizes and sensitive attributes. The experimental results demonstrate the effectiveness of the proposed approach to improve the reconstruction of the sensitive attributes of the training set.
TL;DR: In this paper, we show that learning models that are fair with respect to some sensitive attributes can endanger the privacy of such attributes.
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2209.01215/code)
0 Replies