On the Perils of Cascading Robust ClassifiersDownload PDF

Published: 01 Feb 2023, Last Modified: 29 Sept 2024ICLR 2023 posterReaders: Everyone
Keywords: Certifiable Robustness, Ensemble, Adversarial Attack, Soundness
TL;DR: Our work reveals a critical pitfall of cascading certifiably robust models by showing that the seemingly beneficial strategy of cascading can actually hurt the robustness of the resulting ensemble.
Abstract: Ensembling certifiably robust neural networks is a promising approach for improving the \emph{certified robust accuracy} of neural models. Black-box ensembles that assume only query-access to the constituent models (and their robustness certifiers) during prediction are particularly attractive due to their modular structure. Cascading ensembles are a popular instance of black-box ensembles that appear to improve certified robust accuracies in practice. However, we show that the robustness certifier used by a cascading ensemble is unsound. That is, when a cascading ensemble is certified as locally robust at an input $x$ (with respect to $\epsilon$), there can be inputs $x'$ in the $\epsilon$-ball centered at $x$, such that the cascade's prediction at $x'$ is different from $x$ and thus the ensemble is not locally robust. Our theoretical findings are accompanied by empirical results that further demonstrate this unsoundness. We present a new attack against cascading ensembles and show that: (1) there exists an adversarial input for up to 88\% of the samples where the ensemble claims to be certifiably robust and accurate; and (2) the accuracy of a cascading ensemble under our attack is as low as 11\% when it claims to be certifiably robust and accurate on 97\% of the test set. Our work reveals a critical pitfall of cascading certifiably robust models by showing that the seemingly beneficial strategy of cascading can actually hurt the robustness of the resulting ensemble. Our code is available at https://github.com/TristaChi/ensembleKW.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/on-the-perils-of-cascading-robust-classifiers/code)
13 Replies

Loading