Keywords: ensemble learning, neural networks, regularization, modality agnostic, dynamic ensembling
TL;DR: We introduce a neural network that learns to ensemble by assigning weights dynamically to base models.
Abstract: Ensemble methods are known for enhancing the accuracy and robustness of machine learning models by combining multiple base learners. However, standard approaches like greedy or random ensembles often fall short, as they assume a constant weight across samples for the ensemble members. This can limit expressiveness and hinder performance when aggregating the ensemble predictions. In this study, we explore employing neural networks as ensemble methods, emphasizing the significance of dynamic ensembling to leverage diverse model predictions adaptively. Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions during the training. We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities. Our experiments showcase that the dynamic neural ensemblers yield competitive results compared to strong baselines in computer vision, natural language processing, and tabular data.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6439
Loading