WaveletFT: Discrete wavelet transform for parameter-efficient fine-tuning

Published: 01 Jan 2025, Last Modified: 31 Jul 2025Neurocomputing 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Highlights•WaveletFT shows the core distinctions in the learning paradigms of FT and PEFT.•WaveletFT matches or exceeds LoRA’s performance with far fewer training parameters.•We study parameter scalability to assess our method’s learning capability.
Loading